Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.

Identifieur interne : 000080 ( Main/Exploration ); précédent : 000079; suivant : 000081

Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.

Auteurs : Christopher P. Lapointe [États-Unis] ; Rosslyn Grosely [États-Unis] ; Alex G. Johnson [États-Unis] ; Jinfan Wang [États-Unis] ; Israel S. Fernández [États-Unis] ; Joseph D. Puglisi [États-Unis]

Source :

RBID : pubmed:33479166

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.

DOI: 10.1073/pnas.2017715118
PubMed: 33479166


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.</title>
<author>
<name sortKey="Lapointe, Christopher P" sort="Lapointe, Christopher P" uniqKey="Lapointe C" first="Christopher P" last="Lapointe">Christopher P. Lapointe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grosely, Rosslyn" sort="Grosely, Rosslyn" uniqKey="Grosely R" first="Rosslyn" last="Grosely">Rosslyn Grosely</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Alex G" sort="Johnson, Alex G" uniqKey="Johnson A" first="Alex G" last="Johnson">Alex G. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinfan" sort="Wang, Jinfan" uniqKey="Wang J" first="Jinfan" last="Wang">Jinfan Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, Israel S" sort="Fernandez, Israel S" uniqKey="Fernandez I" first="Israel S" last="Fernández">Israel S. Fernández</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biophysics, Columbia University, New York City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Puglisi, Joseph D" sort="Puglisi, Joseph D" uniqKey="Puglisi J" first="Joseph D" last="Puglisi">Joseph D. Puglisi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; puglisi@stanford.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:regionArea>
<placeName>
<settlement type="city">Stanford (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33479166</idno>
<idno type="pmid">33479166</idno>
<idno type="doi">10.1073/pnas.2017715118</idno>
<idno type="wicri:Area/Main/Corpus">000021</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000021</idno>
<idno type="wicri:Area/Main/Curation">000021</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000021</idno>
<idno type="wicri:Area/Main/Exploration">000021</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.</title>
<author>
<name sortKey="Lapointe, Christopher P" sort="Lapointe, Christopher P" uniqKey="Lapointe C" first="Christopher P" last="Lapointe">Christopher P. Lapointe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grosely, Rosslyn" sort="Grosely, Rosslyn" uniqKey="Grosely R" first="Rosslyn" last="Grosely">Rosslyn Grosely</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Alex G" sort="Johnson, Alex G" uniqKey="Johnson A" first="Alex G" last="Johnson">Alex G. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinfan" sort="Wang, Jinfan" uniqKey="Wang J" first="Jinfan" last="Wang">Jinfan Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, Israel S" sort="Fernandez, Israel S" uniqKey="Fernandez I" first="Israel S" last="Fernández">Israel S. Fernández</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biophysics, Columbia University, New York City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Puglisi, Joseph D" sort="Puglisi, Joseph D" uniqKey="Puglisi J" first="Joseph D" last="Puglisi">Joseph D. Puglisi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; puglisi@stanford.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Structural Biology, Stanford University School of Medicine, Stanford</wicri:regionArea>
<placeName>
<settlement type="city">Stanford (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">33479166</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>118</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2021</Year>
<Month>02</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e2017715118</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.2017715118</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.</AbstractText>
<CopyrightInformation>Copyright © 2021 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lapointe</LastName>
<ForeName>Christopher P</ForeName>
<Initials>CP</Initials>
<Identifier Source="ORCID">0000-0002-0406-105X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grosely</LastName>
<ForeName>Rosslyn</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Alex G</ForeName>
<Initials>AG</Initials>
<Identifier Source="ORCID">0000-0002-4040-9797</Identifier>
<AffiliationInfo>
<Affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jinfan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-4170-9289</Identifier>
<AffiliationInfo>
<Affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernández</LastName>
<ForeName>Israel S</ForeName>
<Initials>IS</Initials>
<Identifier Source="ORCID">0000-0001-7218-1603</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puglisi</LastName>
<ForeName>Joseph D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; puglisi@stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM011378</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI047365</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AG064690</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">NSP1</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">eukaryotic translation initiation</Keyword>
<Keyword MajorTopicYN="Y">human ribosome</Keyword>
<Keyword MajorTopicYN="Y">single-molecule fluorescence</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>16</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33479166</ArticleId>
<ArticleId IdType="pii">2017715118</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.2017715118</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cui J., Li F., Shi Z.-L.. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol.. 2019;17:181–192.</Citation>
</Reference>
<Reference>
<Citation>Drosten C., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med.. 2003;348:1967–1976.</Citation>
</Reference>
<Reference>
<Citation>Ksiazek T. G., et alSARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med.. 2003;348:1953–1966.</Citation>
</Reference>
<Reference>
<Citation>Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D. M. E., Fouchier R. A. M.. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med.. 2012;367:1814–1820.</Citation>
</Reference>
<Reference>
<Citation>Zhou P., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.</Citation>
</Reference>
<Reference>
<Citation>Chan J. F. W., et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect.. 2020;9:221–236.</Citation>
</Reference>
<Reference>
<Citation>Lu R., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565–574.</Citation>
</Reference>
<Reference>
<Citation>Hartenian E., et al. The molecular virology of coronaviruses. J. Biol. Chem.. 2020;295:12910–12934.</Citation>
</Reference>
<Reference>
<Citation>Nakagawa K., Lokugamage K. G., Makino S.. Viral and cellular mRNA translation in coronavirus-infected cells. Adv. Virus Res.. 2016;96:165–192.</Citation>
</Reference>
<Reference>
<Citation>Wathelet M. G., Orr M., Frieman M. B., Baric R. S.. Severe acute respiratory syndrome coronavirus evades antiviral signaling: Role of nsp1 and rational design of an attenuated strain. J. Virol.. 2007;81:11620–11633.</Citation>
</Reference>
<Reference>
<Citation>Jimenez-Guardeño J. M., et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog.. 2015;11:e1005215.</Citation>
</Reference>
<Reference>
<Citation>Narayanan K., et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol.. 2008;82:4471–4479.</Citation>
</Reference>
<Reference>
<Citation>Tohya Y., et al. Suppression of host gene expression by nsp1 proteins of group 2 bat coronaviruses. J. Virol.. 2009;83:5282–5288.</Citation>
</Reference>
<Reference>
<Citation>Tanaka T., Kamitani W., DeDiego M. L., Enjuanes L., Matsuura Y.. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J. Virol.. 2012;86:11128–11137.</Citation>
</Reference>
<Reference>
<Citation>Kamitani W., et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. U.S.A.. 2006;103:12885–12890.</Citation>
</Reference>
<Reference>
<Citation>Kamitani W., Huang C., Narayanan K., Lokugamage K. G., Makino S.. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat. Struct. Mol. Biol.. 2009;16:1134–1140.</Citation>
</Reference>
<Reference>
<Citation>Lokugamage K. G., Narayanan K., Huang C., Makino S.. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J. Virol.. 2012;86:13598–13608.</Citation>
</Reference>
<Reference>
<Citation>Huang C., et al. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog.. 2011;7:e1002433.</Citation>
</Reference>
<Reference>
<Citation>Thoms M., et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020;369:1249–1255.</Citation>
</Reference>
<Reference>
<Citation>Schubert K., et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol.. 2020;27:959–966.</Citation>
</Reference>
<Reference>
<Citation>Yuan S., et al. Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. Mol. Cell. 2020;80:1055–1066.e6.</Citation>
</Reference>
<Reference>
<Citation>Aitken C. E., Lorsch J. R.. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol.. 2012;19:568–576.</Citation>
</Reference>
<Reference>
<Citation>Hinnebusch A. G.. Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends Biochem. Sci.. 2017;42:589–611.</Citation>
</Reference>
<Reference>
<Citation>Hashem Y., Frank J.. The jigsaw puzzle of mRNA translation initiation in eukaryotes: A decade of structures unraveling the mechanics of the process. Annu. Rev. Biophys.. 2018;47:125–151.</Citation>
</Reference>
<Reference>
<Citation>Hinnebusch A. G.. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem.. 2014;83:779–812.</Citation>
</Reference>
<Reference>
<Citation>Sokabe M., Fraser C. S.. Toward a kinetic understanding of eukaryotic translation. Cold Spring Harb. Perspect. Biol.. 2019;11:a032706.</Citation>
</Reference>
<Reference>
<Citation>Almeida M. S., Johnson M. A., Herrmann T., Geralt M., Wüthrich K.. Novel β-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J. Virol.. 2007;81:3151–3161.</Citation>
</Reference>
<Reference>
<Citation>Kim D., et al. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;181:914–921.e10.</Citation>
</Reference>
<Reference>
<Citation>Yin J., Lin A. J., Golan D. E., Walsh C. T.. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc.. 2006;1:280–285.</Citation>
</Reference>
<Reference>
<Citation>Yin J., et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl. Acad. Sci. U.S.A.. 2005;102:15815–15820.</Citation>
</Reference>
<Reference>
<Citation>Fraser C. S., Berry K. E., Hershey J. W. B., Doudna J. A.. eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol. Cell. 2007;26:811–819.</Citation>
</Reference>
<Reference>
<Citation>Aylett C. H. S., Boehringer D., Erzberger J. P., Schaefer T., Ban N.. Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex. Nat. Struct. Mol. Biol.. 2015;22:269–271.</Citation>
</Reference>
<Reference>
<Citation>Brito Querido J., et al. Structure of a human 48S translational initiation complex. Science. 2020;369:1220–1227.</Citation>
</Reference>
<Reference>
<Citation>Johnson A. G., et al. RACK1 on and off the ribosome. RNA. 2019;25:881–895.</Citation>
</Reference>
<Reference>
<Citation>Chen J., et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc. Natl. Acad. Sci. U.S.A.. 2014;111:664–669.</Citation>
</Reference>
<Reference>
<Citation>Sokabe M., Fraser C. S.. Human eukaryotic initiation factor 2 (eIF2)-GTP-Met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J. Biol. Chem.. 2014;289:31827–31836.</Citation>
</Reference>
<Reference>
<Citation>Kieft J. S., Zhou K., Jubin R., Doudna J. A.. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA. 2001;7:194–206.</Citation>
</Reference>
<Reference>
<Citation>Quade N., Boehringer D., Leibundgut M., van den Heuvel J., Ban N.. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nat. Commun.. 2015;6:7646.</Citation>
</Reference>
<Reference>
<Citation>Yamamoto H., et al. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J.. 2015;34:3042–3058.</Citation>
</Reference>
<Reference>
<Citation>Spahn C. M. T., et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science. 2001;291:1959–1962.</Citation>
</Reference>
<Reference>
<Citation>Lokugamage K. G., et al. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J. Virol.. 2015;89:10970–10981.</Citation>
</Reference>
<Reference>
<Citation>Wong A. C. P., Li X., Lau S. K. P., Woo P. C. Y.. Global epidemiology of bat coronaviruses. Viruses. 2019;11:174.</Citation>
</Reference>
<Reference>
<Citation>Wang J., et al. eIF5B gates the transition from translation initiation to elongation. Nature. 2019;573:605–608.</Citation>
</Reference>
<Reference>
<Citation>Wilson J. E., Pestova T. V., Hellen C. U. T., Sarnow P.. Initiation of protein synthesis from the A site of the ribosome. Cell. 2000;102:511–520.</Citation>
</Reference>
<Reference>
<Citation>Fernández I. S., Bai X.-C., Murshudov G., Scheres S. H. W., Ramakrishnan V.. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell. 2014;157:823–831.</Citation>
</Reference>
<Reference>
<Citation>Walters B., Axhemi A., Jankowsky E., Thompson S. R.. Binding of a viral IRES to the 40S subunit occurs in two successive steps mediated by eS25. Nucleic Acids Res.. 2020;48:8063–8073.</Citation>
</Reference>
<Reference>
<Citation>Vassilenko K. S., Alekhina O. M., Dmitriev S. E., Shatsky I. N., Spirin A. S.. Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Res.. 2011;39:5555–5567.</Citation>
</Reference>
<Reference>
<Citation>McCormick C., Khaperskyy D. A.. Translation inhibition and stress granules in the antiviral immune response. Nat. Rev. Immunol.. 2017;17:647–660.</Citation>
</Reference>
<Reference>
<Citation>Schubert K., et al. SARS-CoV-2 Nsp1 binds ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol.. 2020;27:959–966.</Citation>
</Reference>
<Reference>
<Citation>Johnson A. G., Grosely R., Petrov A. N., Puglisi J. D.. Dynamics of IRES-mediated translation. Philos. Trans. R. Soc. Lond. B Biol. Sci.. 2017;372:20160177.</Citation>
</Reference>
<Reference>
<Citation>Rabl J., et al. Ribosomal subunit in complex with initiation factor 1. Science. 2011;331:730–737.</Citation>
</Reference>
<Reference>
<Citation>Weisser M., Voigts-Hoffmann F., Rabl J., Leibundgut M., Ban N.. The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nat. Struct. Mol. Biol.. 2013;20:1015–1017.</Citation>
</Reference>
<Reference>
<Citation>Lomakin I. B., Steitz T. A.. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature. 2013;500:307–311.</Citation>
</Reference>
<Reference>
<Citation>Yoon H. J., Donahue T. F.. The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon. Mol. Cell. Biol.. 1992;12:248–260.</Citation>
</Reference>
<Reference>
<Citation>Cui Y., Dinman J. D., Kinzy T. G., Peltz S. W.. The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol. Cell. Biol.. 1998;18:1506–1516.</Citation>
</Reference>
<Reference>
<Citation>Pestova T. V., Borukhov S. I., Hellen C. U. T.. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature. 1998;394:854–859.</Citation>
</Reference>
<Reference>
<Citation>Pestova T. V., Kolupaeva V. G.. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev.. 2002;16:2906–2922.</Citation>
</Reference>
<Reference>
<Citation>Maag D., Fekete C. A., Gryczynski Z., Lorsch J. R.. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol. Cell. 2005;17:265–275.</Citation>
</Reference>
<Reference>
<Citation>Fraser C. S., Hershey J. W. B., Doudna J. A.. The pathway of hepatitis C virus mRNA recruitment to the human ribosome. Nat. Struct. Mol. Biol.. 2009;16:397–404.</Citation>
</Reference>
<Reference>
<Citation>Sokabe M., Fraser C. S.. A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome. Proc. Natl. Acad. Sci. U.S.A.. 2017;114:6304–6309.</Citation>
</Reference>
<Reference>
<Citation>Shah P., Ding Y., Niemczyk M., Kudla G., Plotkin J. B.. Rate-limiting steps in yeast protein translation. Cell. 2013;153:1589–1601.</Citation>
</Reference>
<Reference>
<Citation>Chu D., et al. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J.. 2014;33:21–34.</Citation>
</Reference>
<Reference>
<Citation>Shuvalov A., et al. Nsp1 of SARS-CoV-2 stimulates host translation termination. bioRxiv.</Citation>
</Reference>
<Reference>
<Citation>Hashem Y., et al. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature. 2013;503:539–543.</Citation>
</Reference>
<Reference>
<Citation>Kumar P., Hellen C. U. T., Pestova T. V.. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev.. 2016;30:1573–1588.</Citation>
</Reference>
<Reference>
<Citation>Giess A., et al. Profiling of small ribosomal subunits reveals modes and regulation of translation initiation. Cell Rep.. 2020;31:107534.</Citation>
</Reference>
<Reference>
<Citation>Petrov A., Grosely R., Chen J., O’Leary S. E., Puglisi J. D.. Multiple parallel pathways of translation initiation on the CrPV IRES. Mol. Cell. 2016;62:92–103.</Citation>
</Reference>
<Reference>
<Citation>Johnson A. G., et al. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res.. 2018;46:e8.</Citation>
</Reference>
<Reference>
<Citation>Damoc E., et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol. Cell. Proteomics. 2007;6:1135–1146.</Citation>
</Reference>
<Reference>
<Citation>Pisarev A. V., Unbehaun A., Hellen C. U. T., Pestova T. V.. Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol.. 2007;430:147–177.</Citation>
</Reference>
<Reference>
<Citation>Acker M. G., Kolitz S. E., Mitchell S. F., Nanda J. S., Lorsch J. R.. Reconstitution of yeast translation initiation. Methods Enzymol.. 2007;430:111–145.</Citation>
</Reference>
<Reference>
<Citation>Köhrer C., Rajbhandary U. L.. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods. 2008;44:129–138.</Citation>
</Reference>
<Reference>
<Citation>Ran F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc.. 2013;8:2281–2308.</Citation>
</Reference>
<Reference>
<Citation>Goddard T. D., et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci.. 2018;27:14–25.</Citation>
</Reference>
<Reference>
<Citation>Khatter H., Myasnikov A. G., Natchiar S. K., Klaholz B. P.. Structure of the human 80S ribosome. Nature. 2015;520:640–645.</Citation>
</Reference>
<Reference>
<Citation>Simonetti A., Guca E., Bochler A., Kuhn L., Hashem Y.. Structural insights into the mammalian late-stage initiation complexes. Cell Rep.. 2020;31:107497.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>État de New York</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Lapointe, Christopher P" sort="Lapointe, Christopher P" uniqKey="Lapointe C" first="Christopher P" last="Lapointe">Christopher P. Lapointe</name>
</region>
<name sortKey="Fernandez, Israel S" sort="Fernandez, Israel S" uniqKey="Fernandez I" first="Israel S" last="Fernández">Israel S. Fernández</name>
<name sortKey="Grosely, Rosslyn" sort="Grosely, Rosslyn" uniqKey="Grosely R" first="Rosslyn" last="Grosely">Rosslyn Grosely</name>
<name sortKey="Johnson, Alex G" sort="Johnson, Alex G" uniqKey="Johnson A" first="Alex G" last="Johnson">Alex G. Johnson</name>
<name sortKey="Johnson, Alex G" sort="Johnson, Alex G" uniqKey="Johnson A" first="Alex G" last="Johnson">Alex G. Johnson</name>
<name sortKey="Puglisi, Joseph D" sort="Puglisi, Joseph D" uniqKey="Puglisi J" first="Joseph D" last="Puglisi">Joseph D. Puglisi</name>
<name sortKey="Wang, Jinfan" sort="Wang, Jinfan" uniqKey="Wang J" first="Jinfan" last="Wang">Jinfan Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000080 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000080 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33479166
   |texte=   Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33479166" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021